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Abstract: We analyzed 27 established and new simple and therefore perhaps portable satellite
phycocyanin pigment reflectance algorithms for estimating cyanobacterial values in a temperate
8.9 km2 reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense
coincident water surface observations collected from 44 sites within 1 h of image acquisition.
The algorithms were adapted to real Compact Airborne Spectrographic Imager (CASI), synthetic
WorldView-2, Sentinel-2, Landsat-8, MODIS and Sentinel-3/MERIS/OLCI imagery resulting in
184 variants and corresponding image products. Image products were compared to the cyanobacterial
coincident surface observation measurements to identify groups of promising algorithms for
operational algal bloom monitoring. Several of the algorithms were found useful for estimating
phycocyanin values with each sensor type except MODIS in this small lake. In situ phycocyanin
measurements correlated strongly (r2 = 0.757) with cyanobacterial sum of total biovolume (CSTB)
allowing us to estimate both phycocyanin values and CSTB for all of the satellites considered except
MODIS in this situation.
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1. Introduction

1.1. Background

Algal blooms, including some toxic or “harmful” algal blooms (HABs), are increasing and affecting
inland rivers, lakes and reservoirs, many of which are used as a source of drinking water [1,2]. HABs
are often associated with prokaryotic cyanobacteria (i.e., blue-green algae (BGA)) [1]. These HABs have
made the development of satellite reflectance algorithms for the estimation of the chlorophyll-a (Chl-a)
and phycocyanin (PC) pigments associated with cyanobacterial biomass a high research priority for
monitoring and warning efforts [3–6]. Chlorophyll-a is less specific to cyanobacterial blooms than
phycocyanin because it occurs in both prokaryotic and eukaryotic phytoplankton, although Chl-a is
more easily sensed by a variety of current and near-future satellite imaging systems because most
current electro-optical satellite imaging systems are also designed to sense Chl-a in land plants [5].

Phycocyanin is a spectrally active accessory pigment specific to cyanobacteria that is commonly
used as a proxy for cyanobacterial (BGA) biomass [4,7–23]. Phycocyanin pigment is therefore a key
indicator of water quality [11,16]. Phycocyanin is more specific to cyanobacteria but is more difficult to
sense because its spectral features are subtler and overlap with Chlorophyll-a, b and c as well as other
pigments and water quality parameters [24]. Satellite reflectance algorithms for estimating BGA values
with algorithms focused on phycocyanin reflectance signatures in temperate inland water bodies have
been reviewed and evaluated by many researchers [10,11,14,16,22]. The large amount of previous BGA
algorithm research has resulted in numerous algorithm options for algal bloom monitoring.

1.2. Rationale

The goal of this research is to find relatively simple, semi-analytical (spectral signature-based)
phycocyanin and chlorophyll-a reflectance algorithms that are adaptable to a variety of satellite imagers
(i.e., portable). A main objective is to maximize the utility of multiple current and near-future satellite
imaging systems to counter the frequent cloud cover occurring over many small inland water bodies
to estimate BGA/PC values. We conducted a case study using Harsha Lake, a 2000-acre (8.9 km2)
drinking water reservoir in southwestern Ohio experiencing HABs. We began this research with
a comparison of real aircraft and simulated satellite data imager/algorithm combinations against
chlorophyll-a (Chl-a) coincident water surface observations [6]. We focus on BGA/PC estimation in
this paper.

1.3. Study Area

For the sake of brevity, most of the details of our approach, study area (Figure 1), aircraft campaign,
pre-processing, synthetic satellite data construction, image analysis, statistical regression techniques,
combined error budgets, and coincident surface observations (Figure 2) are available in our companion
Chl-a study [6].
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Figure 1. Location maps of Harsha (East Fork) Lake near Cincinnati, Ohio: location in Ohio (a); and 

in detail (b). 
Figure 1. Location maps of Harsha (East Fork) Lake near Cincinnati, Ohio: location in Ohio (a); and in
detail (b).
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Figure 2. Image of Harsha (East Fork) Lake acquired with a CASI-1500 imager on 27 June 2014 with 

44 coincident surface observation locations used in this study. 
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Phycocyanin is a light blue organic compound more specific to cyanobacterial (BGA/PC) values 

than chlorophyll-a [16]. The phycocyanin reflectance signature when compared to that of Chl-a is 

both weaker [24] and more difficult to sense directly with most imagers due to the interfering 

reflectance of chlorophyll-a and other spectrally active substances in water with abundant 

phytoplankton and/or sediment [7,8] (Figure 3). This interference makes the width and spacing of 

spectral bands for each imager important with regard to avoiding other spectral components 

[7,8,10,11,13,14,16,24–26]. 

 

Figure 3. Averaged reflectance spectra of an intense cyanobacterial (Microcystis) bloom over visible 

and near-infrared (NIR) wavelengths, with location of Sentinel-3/MERIS/OLCI red and NIR bands 

showing phycocyanin absorption at 620 nm, chlorophyll-a absorption at 670 nm and chlorophyll-a 

reflectance peak at 724 nm [27]. X-axis is wavelength in nanometers, and Y-axis is relative reflectance. 

Only a few of the existing satellite imaging systems can measure the depth of the approximately  

620 nm phycocyanin absorption feature relative to other parts of the visible to near-infrared spectrum.  

Image via IEEE Earthzine: “Satellite Monitoring of Toxic Cyanobacteria for Public Health” 

https://earthzine.org/2014/03/26/satellite-monitoring-of-toxic-cyanobacteria-for-public-health/. 

Figure 2. Image of Harsha (East Fork) Lake acquired with a CASI-1500 imager on 27 June 2014 with
44 coincident surface observation locations used in this study.

1.4. Approach

Phycocyanin is a light blue organic compound more specific to cyanobacterial (BGA/PC) values
than chlorophyll-a [16]. The phycocyanin reflectance signature when compared to that of Chl-a is both
weaker [24] and more difficult to sense directly with most imagers due to the interfering reflectance of
chlorophyll-a and other spectrally active substances in water with abundant phytoplankton and/or
sediment [7,8] (Figure 3). This interference makes the width and spacing of spectral bands for each
imager important with regard to avoiding other spectral components [7,8,10,11,13,14,16,24–26].
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Figure 3. Averaged reflectance spectra of an intense cyanobacterial (Microcystis) bloom over visible
and near-infrared (NIR) wavelengths, with location of Sentinel-3/MERIS/OLCI red and NIR bands
showing phycocyanin absorption at 620 nm, chlorophyll-a absorption at 670 nm and chlorophyll-a
reflectance peak at 724 nm [27]. X-axis is wavelength in nanometers, and Y-axis is relative reflectance.
Only a few of the existing satellite imaging systems can measure the depth of the approximately
620 nm phycocyanin absorption feature relative to other parts of the visible to near-infrared spectrum.
Image via IEEE Earthzine: “Satellite Monitoring of Toxic Cyanobacteria for Public Health” https:
//earthzine.org/2014/03/26/satellite-monitoring-of-toxic-cyanobacteria-for-public-health/.

https://earthzine.org/2014/03/26/satellite-monitoring-of-toxic-cyanobacteria-for-public-health/
https://earthzine.org/2014/03/26/satellite-monitoring-of-toxic-cyanobacteria-for-public-health/
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BGA algorithms based on the reflectance spectrum of phycocyanin should be better indicators
of cyanobacteria than Chl-a algorithms because of their specificity, but are more difficult to adapt to
existing satellite imaging systems due to much of the phycocyanin reflectance spectrum being masked
by Chl-a and other pigments [11]. Only those imagers that sense a narrow absorption feature near
620 nm are well suited for the direct estimation of phycocyanin and BGA (Table 1). We have focused
on relatively simple algorithms for BGA/PC estimation accordingly. Other water quality parameters
such as Chl-a often co-occur and may co-vary with BGA and may be used as proxies for BGA in some
water bodies [3,6–11,14,15,17,23,24,28–30].

Even with direct BGA estimation based on phycocyanin spectral features, not all species of
cyanobacteria produce toxins and even the same species of BGA may or may not produce toxins
depending upon environmental conditions. Therefore, remote sensing of algal blooms and especially
BGA blooms is a first-cut technology that can “red flag” cyanobacterial blooms but cannot assess
toxicity directly [24].

In this study we balance accuracy with portability across a variety of satellite imagers to counter
frequent cloud cover issues during the humid temperate summers of southwest Ohio, and to create a
practical first-cut capability for potential HAB monitoring. The target users for this technology are
water quality managers of smaller inland water bodies less than a few km across. Given that no current
remote sensing technology can actually detect the toxins in algal blooms [24], our operational goal
is to find groups of imager/algorithm combinations that appear promising for the detection of algal
blooms. Once a significant algal bloom is detected it will be necessary to collect water samples to
evaluate toxicity. Therefore we are not concerned about detecting very low values of chlorophyll-a
or phycocyanin nor are we concerned about saturation at high Chl-a/BGA values or differentiating
high Chl-a/BGA values from surface algal scums for the purposes of this near-term warning and
monitoring system. Characterizing Chl-a [6] and/or BGA/PC (this study) values as low, medium or
high will be sufficient in this context of smaller inland water bodies in temperate climates like that
of Ohio due to frequent summer cloud cover. Interpretation of low, medium or high will depend on
the algorithm index and imager in a regional context. Regional water quality managers will then be
able to use their experience in combination with field-based toxicity data to determine thresholds and
appropriate responses to algal blooms.

Several studies have used high spectral resolution surface point and imaging spectroradiometers
with numerous and narrow (“hyperspectral”) band configurations to collect reflectance signatures
of BGA laden inland waters in order to formulate algorithms to estimate BGA values based on the
phycocyanin reflectance signature [7,8,10,11,13,14,17,31,32]. We have favored simple algorithms for the
reasons above. In several cases, we have followed the band choices of previous workers in simplified
versions of their algorithms [7,8,10] or transferred their band choices to new or variants of existing
algorithms [7–9,11,17].

Surface phytoplankton values are influenced by wind (mixing and drifting) as well as changes
in the nutrient flux and water temperature, among other variables. Phytoplankton communities,
in general, are dynamic on the scale of days and sometimes hours [29–39]. Moderate resolution satellites
such as Landsat-8 can provide affordable sources of imagery for water quality monitoring in inland
reservoirs [40]; however, their fixed revisit times, fixed observation angles and small constellations
(usually a single satellite) limit their temporal resolution (e.g., 16 days for Landsat-8). It is therefore
desirable to use a variety of low-cost sources of moderate spatial resolution satellite imagery from
different satellites to increase temporal resolution and maximize the chances of successful image
acquisition. Moderate resolution satellites such as Landsat-8, Sentinel-3/MERIS/OLCI, the Moderate
Resolution Imaging Spectrometer (MODIS), and the new Sentinel-2 A&B constellation have a variety
of both spatial resolutions and band configurations [33–40]. Not all satellite BGA/PC algorithms can
be applied to all existing moderate resolution satellite imagers accordingly.
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2. Methods

The methods used in this comparison of phycocyanin algorithms are similar to those of the
companion study on chlorophyll-a [6]. This section is abbreviated accordingly. Our research used the
following key datasets: airborne visible and near-infrared (VNIR) hyperspectral imagery of Harsha
Lake and extensive, coincident surface spectral observations, laboratory measurements of water quality
parameters and in situ water sensors. YSI BGA probe data were used to develop and calibrate a set of
numerical algorithms for rapid and economical quantitative estimation of BGA values in this study.

2.1. Coincident Surface Observations of BGA

Twenty-seven established and new algorithms for BGA/PC estimation, either directly or via Chl-a
proxy, were tested against the BGA/PC YSI probe (sonde) data for the real CASI aircraft hyperspectral
imagery and for synthetic versions of several multispectral satellites. As stated above, our goal is
the regional to local operational use of decades of previous work by others on reflectance algorithms
for HAB detection. For this reason, we have focused our coincident surface observations on YSI
BGA/PC relative fluorescence unit (BGA_PC_RFU) values to provide water quality managers with
a rapid, affordable and common method for surface BGA/PC calibration for the most promising
reflectance algorithms discussed below. This approach is adequate for our task because even BGA/PC
concentrations (as opposed to BGA_PC_RFU values) are not a direct indicator of toxicity. Determination
of toxicity requires at least limited and focused water sampling followed by laboratory analyses [5].

Given the variety of band center wavelengths and bandwidths for these different real and synthetic
imagers, 184 variants of the initial 27 algorithm/imager combinations were created for this companion
study in which we used the same aircraft imaging spectrometer dataset and field methods described
in Beck et al. [6]. We then evaluated the initial set of Chl-a algorithms [6], several published BGA/PC
algorithms as well as some new BGA/PC algorithms and their observed image-derived indices against
(field/measured/observed) BGA estimates from in-situ fluorometry using a YSI brand BGA probe
for measuring PC in the field and laboratory microscope-based BGA cell counts from water samples
collected within 1 h of aircraft hyperspectral imager (imaging spectrometer) acquisition.

2.2. Atmospheric Correction of CASI Hyperspectral Aircraft Imagery

All of the synthetic imagery used for the following performance analysis with regard to the
estimation of BGA is derived from VNIR CASI data atmospherically corrected to reflectance [6].
Atmospheric correction is usually incomplete, especially in regions of high humidity, nonetheless,
we observed strong visual similarity of our pixel reflectance and Analytical Spectral Devices (ASD)
reflectance spectra, very strong visual similarity of spatial pattern between image derived Chl-a
indices and our coincident surface observations and strong (r2 > 0.6; p < 0.001) to very strong (r2 > 0.7;
p < 0.001) observed vs. predicted Pearson’s r2 values depending on coincident surface observation
type. The visual similarity of our surface and aircraft relative reflectance spectra is also confirmed
statistically. For example, we averaged all 16 United States Army Corps of Engineers (USACE) surface
ASD and USACE CASI (FLAASH) reflectance spectra from 16 locations from Harsha Lake and then
normalized the CASI data to the ASD data in the Spectral Analysis and Management System (SAMS)
at 550 nm in Figure 4 for comparison.

We then resampled the averaged ASD reflectance spectrum to the averaged CASI reflectance
spectrum to obtain relative reflectance values at the same scale at the same wavelengths (Figure 5).

Our study used wavelengths from 425 to 865 nm (Table 2) so we created an observed vs. predicted
(OP) Pearson’s regression (ASD surface vs. CASI aircraft relative reflectance) for all reflectance value
pairs between those wavelengths. We verified this atmospheric correction by normalizing CASI
to ASD spectroradiometer relative reflectance values at 550 nm at 16 locations and then evaluated
their similarity with a linear regression of the relative reflectance value pairs for the 425 to 865 nm
wavelengths used in this study with excellent results (Figure 6).
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Figure 6. Pearson’s test of linear correlation for ASD vs. CASI relative reflectance values at 32 

wavelengths (n = 32). r2 = 0.89, p < 0.001, degrees of freedom = 30, slope = 1.265, intercept = −0.024. 

Figure 4. Averaged Analytical Spectral Devices (ASD) surface relative reflectance spectra (red) vs.
Averaged CASI reflectance spectra (n = 16) (black) for Harsha Lake with CASI data normalized to ASD
at 550 nm. Wavelength in nm. They correspond well over the 425 and 865 nm wavelength range used
in our study. One can even see a slight depression in the CASI spectra at 620 nm that corresponds to
the phycocyanin absorption feature.
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(n = 32). r2 = 0.89, p < 0.001, degrees of freedom = 30, slope = 1.265, intercept = −0.024.
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Figures 5 and 6 show some overestimation of reflectance by the atmospherically corrected CASI
data, although the spectral shapes are similar. Therefore, the following algorithm/imager vs. coincident
surface water observation regression results are for atmospherically corrected imagery for all of the
real aircraft and synthetic satellite sensors considered below.

The atmospherically corrected (relative reflectance) CASI airborne hyperspectral imagery was
upscaled to synthesize moderate resolution satellite data to develop specifications for a prototype
multi-satellite monitoring system for HABs in our case study lake, Harsha Lake, in Southwest
Ohio [6]. The band characteristics of our synthetic satellite imagers are summarized in Table 1.
The original established algorithms, authors and band math with the original wavelength centers for
Chl-a (indirect) and BGA/PC (direct) phycocyanin/BGA estimation algorithms are listed in Table 2.
The algorithm/imager combinations and our 184 adaptations of the original algorithms to new
wavelength centers for several synthetic satellite imagers are listed in Table S1. It is important to
note that most of the existing algorithms were designed for different water bodies, including some
CASE 1 water bodies [25] with different imagers. Imagers often have differing band centers, widths
and spacing so the performance of the adapted algorithms here reflects our attempts at portability to
new imagers in this circumstance only (a smaller temperate inland reservoir and perhaps some similar
CASE 2 [25] waters) and does not reflect on the scientific talent of the original authors. Indeed, some
established algorithms perform poorly with our narrow band real aircraft CASI data and better with
spectral (and spatial) binning in our synthetic satellite data or vice-versa, as will be described below.
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Table 1. Band wavelength ranges, centers and widths for original and synthetic satellite imagers. FWHM is Full Width Half Maximum.

Imager Original Range (nm) Center (nm) FWHM (nm) Synthetic Range (nm) Synthetic Center (nm) FWHM (nm)

WorldView-2/3 Resampled to 1.8 m

b1 400–450 425 50 403–454 428.5 51
b2 450–510 480 60 454–505 479.5 51
b3 510–580 545 70 523–573 548 50
b4 585–625 605 40 582–633 607.5 51
b5 630–690 660 60 634–684 659 50
b6 705–745 725 40 710–749 729.5 39
b7 770–895 832.5 125 790–889 839.5 99
b8 860–1040 950 180 889–1043 966 154

Sentinel-2 Resampled to 20 m

b1 433–453
b2 458–523 490.5 65 457–515 486 58
b3 543–578 560.5 35 543–572 557.5 29
b4 650–680 665 30 643–686 664.5 43
b5 698–713 705.5 15 700–714 707 14
b6 733–748 740.5 15 728–743 735.5 15
b7 773–793 783 20 771–800 785.5 29
b8 785–900 842.5 115 785–900 842.5 115

b8b 855–875 865 20 856–871 863.5 15
b9 935–955 945 20 935–955 945 20

Landsat-8 Resampled to 30 m

b1 430–450 440 20 429–443 436 14
b2 450–510 480 60 457–500 478.5 43
b3 530–590 560 60 529–586 557.5 57
b4 640–670 655 30 643–672 657.5 29
b5 850–880 865 30 856–885 870.5 29

MODIS Resampled to 250 m

b1 620–670 645 50 615–672 643.5 57
b2 841–876 858.5 35 842–871 856.5 29

S3/MERIS/OLCI Resampled to 300 m

b1 402–412 407 10 400–414 407 14
b2 438–448 443 10 429–457 443 28
b3 485–495 490 10 486–500 493 14
b4 505–515 510 10 500–515 507.5 15
b5 555–565 560 10 558–572 565 14
b6 615–625 620 10 615–629 622 14
b7 660–670 665 10 657–672 664.5 15
b8 678–685 681.5 7 672–686 679 14
b9 704–714 709 10 700–714 707 14

b10 750–757 753.5 7 743–757 750 14



Remote Sens. 2017, 9, 538 10 of 30

Table 1. Cont.

Imager Original Range (nm) Center (nm) FWHM (nm) Synthetic Range (nm) Synthetic Center (nm) FWHM (nm)

S3/MERIS/OLCI Resampled to 300 m

b11 757–762 759.5 5 750–764 757 14
b12 772–787 779.5 15 757–800 778.5 43
b13 855–875 865 20 842–885 863.5 43
b14 880–890 885 10 871–899 885 28
b15 895–905 900 10 885–913 899 28

Table 2. Band math and original specified wavelengths in nm for each algorithm used for blue-green algae/phycocyanin (BGA/PC) relative fluorescence unit (RFU)
estimation at Harsha Lake. Float refers to floating point values of relative reflectance in the ENVI band math we used in this study at the specified wavelengths in nm
from atmospherically corrected imagery. Float is not a variable; it is an IDL function used to prevent byte overflow errors during calculation. Asterisk after algorithm
denotes design specifically for phycocyanin detection.

Algorithm Reference ENVI Band Math with Original Specified Wavelengths

(Numerical Value = Wavelength in nm)

Al10SABI Alawadi et al. (2010) [41] (float(857) − float(644))/(float(458) + float(529))
Am092Bsub Amin et al. (2009) [42] (float(678)) − (float(667))
Am09KBBI Amin et al. (2009) [42] (float(686) − float(658))/(float(686) + float(658))
Be162Bdiv This paper (float(681))/(float(665))

Be162Bsub * This paper (float(700)) − (float(622))
Be16FLHblue Beck et al. (2016) [6] (float(529)) − [float(644) + (float(458) − float(644))]
Be16FLHPhy * This paper (float(620)) − [float(709) + (float(560) − float(709))]
Be16FLHviolet Beck et al. (2016) [6] (float(529)) − [float(644) + (float(5) − float(644))]
Be16NDPhyI * This paper (float(700) − float(622))/(float(700) + float(622))

DE933BDA Dekker (1993) [26] ((float(600)) − (float(648))) − (float(625))
Gi033BDA Gitelson et al. (2003) [43] ((1/float(672)) − (1/float(715))) × (float(757))
Go04MCI Gower et al. (2004) [44] (((float(709)) − (float(681)) − ((float(753)) − (float(681)))))

HU103BDA * Hunter et al. (2008) [29] ((1/float(615)) − (1/float(600))) − (float(725))
Kn07KIVU Kneubuhler et al. (2007) [45] (float(458) − float(644))/(float(529))
Ku15PhyCI Kudela et al. (2015) [17] −1 × (((float(681)) − (float(665)) − ((float(709)) − (float(665)))))
MI092BDA Mishra et al. (2009) [11] (float(700))/(float(600))

MM092BDA Mishra et al. (2009) [11] (float(724))/(float(600))
MM12NDCI Mishra and Mishra (2012) [32] (float(700) − float(665))/(float(700) + float(665))

MM143BDAopt * Mishra and Mishra (2014) [16] ((1/float(629)) − (1/float(659))) × (float(724))
MM143BDAver3merisver * Mishra and Mishra (2014) [16] ((1/float(620)) − (1/float(665))) × (float(778))

SI052BDA * Simis et al. (2005) [7] (float(709))/(float(620))
SM122BDA S. Mishra (2012) [46] (float(709))/(float(600))
SY002BDA * Schalles and Yacobi (2000) [47] (float(650))/(float(625))

Stu16Phy Stumpf et al. (2016) [24] (float(665) − float(620)) + ((float(620) − float(681)) × 0.74)
Stu16PhyFLH * Stumpf et al. (2016) [24] (float(665)) − (float(681) + (float(620) − float(681)))

Wy08CI Wynne et al. (2008) [19] −1 × (((float(686)) − (float(672)) − ((float(715)) − (float(672)))))
Zh10FLH Zhao et al. (2010) [48] (float(686)) − [float(715) + (float(672) − float(715))]
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3. Results

Single-band output from the Band Math function in ENVI for each BGA algorithm (ENVI Band
Math Field in Table 2 and Table S1) was point sampled using the coincident surface observation
locations (Figure 2) to extract BGA index (image) values for comparison with measured YSI sonde
BGA/PC relative fluorescence unit values (BGA_PC_RFU) collected within 1 h of the CASI overflight.
Strong correlations (Pearson’s r2 > 0.6; p < 0.001) between image derived indices and dense
coincident surface observations of BGA during this experiment indicate that Be162BsubPhy, SI052BDA,
Be162B700sub601, Be16NDPhyI, Gi033BDA, Da052BDA, SM122BDA, Ku15PhyCI, MM092BDA,
MI092BDA, Wy08CI, Zh10FLH, and MM12NDCI BGA algorithms worked well with CASI imagery.
The Be162BsubPhy, SI052BDA, Am092Bsub, Be16NDPhyI, Mi092BDA, and MM12NDCI BGA
algorithms worked well (Pearson’s r2 > 0.6; p < 0.001) with simulated WorldView-2 and -3, imagery; the
Be162Bsub algorithm with simulated Sentinel-2 imagery; the Be16FLHviolet with simulated Landsat-8
imagery; and the MM092BDA, Be16NDPhyI, MM12NDCI, Go04MCI, Ku15PhyCI, Wy08CI, SI052BDA,
Be162BsubPhy, and Hu103BDA BGA algorithms with simulated Sentinel-3/MERIS/OLCI imagery.
The Be162BsubPhy algorithm was the most widely applicable BGA algorithm with good performance
for CASI, WorldView-2 and -3, Sentinel-2 and MERIS-like imagery and limited performance with
MODIS imagery. The Be16FLHviolet “greenness” algorithm yielded the best (although poor) BGA/PC
estimates with simulated Landsat-8 imagery.

We also conducted an extensive survey of other water quality parameters in the lake at the time
of acquisition in order to determine why some proxy indices such as Chl-a may also work with regard
to BGA estimation. Details of our statistical treatment of the data are available in Beck et al. [6]. Type 1
(Pearson’s) r2 values were used to evaluate algorithm performance with raw index values vs. BGA/PC
relative fluorescence units (BGA_PC_RFU) values measured with YSI BGA optical sondes in the water
(Table S2) and as index values normalized to BGA values vs. BGA_PC_RFU values (Table S3) to
facilitate comparison.

We used a critical p-value of 0.001 for all Pearson’s r Type 1 regression tests. Some researchers
prefer Standard Error of Regression (Standard Error of Estimate or S) values to Type 1 (Pearson’s)
r2 values so we have also included them for the top performing algorithms from Table S3 for
comparison (Table 3). Other researchers prefer Type 2 regressions [48] to test correlations of observed
vs. measured values [49] in natural systems. Therefore, we also applied the Type 2 geometric mean
method of Peltzer [48] to BGA estimation at Harsha (East Fork) Lake with all results again normalized
to calculated BGA values for top performing algorithms for each imager by Type 1 regression tests [17]
(Table 4). A combined error budget for radiometry and multispectral image synthesis is presented in
the chlorophyll-a companion paper [6].

Examples of promising algorithms as applied to real CASI aircraft hyperspectral imagery and
synthetic multispectral satellite imagery are discussed below.
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Table 3. Performance of Algorithms for BGA Estimation at Harsha (East Fork) Lake with all results normalized to calculated BGA values with additional Type 1
Regression tests for Standard Error of Regression (Standard Error of Estimate or S values) and associated statistics. Float refers to floating point values of relative
reflectance in the ENVI band math we used in this study at the specified wavelengths in nm from atmospherically corrected imagery. Float is not a variable; it is an
IDL function used to prevent byte overflow errors during calculation.

Algorithms By Satellite/Sensor R-Squared Adj. R-Sqr. Std. Err. Reg. Std. Dev. n Residual Mean Square p Conf. Level

S

CASIBe152BsubPhy715sub615 0.763 0.754 1.974 3.978 29 3.896 <0.001 95.0%
(float(715)) − (float(615))

WV2Be162Bsub 0.790 0.782 1.871 4.007 29 3.500 <0.001 95.0%
(float(730)) − (float(608))

S2Be162Bsub 0.704 0.693 2.219 4.007 29 4.924 <0.001 95.0%
(float(736)) − (float(665))

L8Be15Flhviolet 0.339 0.314 3.318 4.007 29 11.011 <0.001 95.0%
(float(530)) − [float(640) + (float(430) − float(640))]

MODISMM12NDCI4 0.183 0.066 2.938 3.040 9 8.632 0.251 95.0%
(float(857) − float(644))/(float(857) + float(644))

MERISMM092BDA 0.863 0.843 1.203 3.040 9 1.448 <0.001 95.0%
(float(707))/(float(679))

Table 4. Performance of Algorithms for BGA Estimation at Harsha (East Fork) Lake with all results normalized to calculated BGA values with additional Type 2
Geometric Mean Tests for top performing algorithms by Type 1 Regression tests.

Algorithms By Satellite/Sensor Spatial n Geometric Geometric Geometric Geometric Standard Standard

(Band Math in nm) Res. (m) Mean Mean Mean Mean Deviation of Deviation of

Slope Intercept Correlation Correlation Slope Y-intercept

Coefficient Coefficient

Squared

CASIBe152BsubPhy715sub615 1 29 1.141 −1.500 0.881 0.777 0.107 1.199
(float(715)) − (float(615))

WV2Be162Bsub 1.8 29 1.128 −1.376 0.889 0.790 0.102 1.150
(float(730)) − (float(608))

S2Be162Bsub 20 29 1.194 −2.087 0.839 0.704 0.130 1.456
(float(736)) − (float(665))

L8Be15Flhviolet 30 29 1.708 −7.773 0.582 0.339 0.301 3.317
(float(530)) − [float(640) + (float(430) − float(640))]

MODISMM12NDCI412 250 9 2.339 −13.716 0.428 0.183 0.946 9.760
(float(857) − float(644))/(float(857) + float(644))

MERISMM092BDA 300 9 1.077 −0.783 0.929 0.863 0.153 1.624
(float(707))/(float(679))
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3.1. CASI Imagery

We applied 27 algorithms in the form of 70 variants to the 1-m, 48-band CASI VNIR hyperspectral
reflectance image mosaic (Tables S1, S2 and S4 and Figure 7). CASI has a narrow band capable
of measuring the 620 nm phycocyanin absorption feature. The performance of each algorithm in
Tables 2 and 3 applied to the CASI reflectance imagery was then evaluated using 29 coincident
surface observations for the sake of consistency with synthetic WorldView-2 and -3, Sentinel-2 and
Landsat-8 imagery (other sub-30 m imagery). Simple subtraction, ratio-based and shape metric (second
derivative) algorithms that include the 620 nm phycocyanin absorption feature and/or reflectance in
the near-infrared suppress illumination variation well and had the best performance with regard
to BGA estimation. In decreasing order of performance (Pearson’s r2), the CASIBe152BsubPhy,
CASISI052BDA, CASIBe162B700sub601, CASIBe16NDPhyI, CASIGi033BDA, CASIDa052BDA,
CASISM122BDA, CASIKu15PhyCI, CASIMM092BDA, CASIMi092BDA, CASIWy08CI, CASIZh10FLH,
and CASIMM12NDCI algorithms worked well (Pearson’s r2 > 0.600) for BGA estimation with CASI
imagery. Index imagery with raw and normalized index Type 1 (Pearson’s r) linear regressions are
shown for the best performing algorithm (CASIBe152BsubPhy) in Figure 7.
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Figure 7. Results of CASIBe152BsubPhy (715sub615) algorithm (this paper) as raw index values as
applied to original CASI imagery with brighter pixels in the reservoir indicating higher BGA/PC values
(a). Evaluation via observed (Y axis = BGA_PC_RFU) vs. predicted (calculated) raw CASIBe152BsubPhy
(715sub615) index value with Pearson’s r2 (r2 = 0.776 p < 0.001, n = 29 to avoid shorelines) (b).
Evaluation via observed (Y axis = BGA_PC_RFU) vs. normalized predicted (calculated) BGA values
(CASIBe152BsubPhyPHY) with Pearson’s r2 (r2 = 0.776, p < 0.001, n = 29 to avoid shorelines) (c). Details
of the synthetic bands and band math are available in Tables 1 and 2, respectively.

Excellent results for several algorithms with CASI high resolution aircraft imagery for
BGA_PC_RFU value estimation and their resulting index maps (Figure 7a) reveal considerable spatial
heterogeneity at the 1 m scale in Harsha Lake at the time of aircraft image acquisition. This spatial
heterogeneity of BGA/PC values in the imagery is supported by strong correlations with dense
coincident surface observations (Figure 7b,c). Figure 5a also shows a strong correlation between the
locations of the inflow from the East Fork of the Little Miami River in the NE corner of the image and
the largest region of high BGA_PC_RFU values. In general the east basin of Harsha Lake has higher
BGA/PC values than the west basin (Figure 7a). One can also see gyre-like structures associated with
the dissipation of the BGA/PC-rich waters from east to west across the lake. The spatial heterogeneity
displayed by the processed CASI images is masked to varying degrees in the coarser spatial resolution
synthetic satellite data derived from this real CASI relative reflectance data as shown below. This
masking of spatial heterogeneity in the east and west basins in coarse resolution satellite imagery also
appears to exaggerate the contrast in BGA/PC values between the east and west basins of Harsha
Lake. We view the high correlations of coincident surface observations with predicted BGA/PC values
with coarse resolution synthetic MERIS/OLCI data presented below with some caution accordingly.

3.2. WorldView-2 (Synthetic)

We applied 11 existing and two new algorithms in the form of 25 variants to synthetic 1.8-m,
WorldView-2 imagery to examine the degree of portability of some of the simpler algorithms between
(synthetic) satellite imaging systems (Tables S1, S2 and S4 and Figure 8). WorldView-2 has a
narrow band capable of measuring the 620 nm phycocyanin absorption feature. We also applied
a new subtraction algorithm (Be162Bsub) and a new modified NDCI algorithm [32] (Be16NDPhyI)
tuned to the 620 nm phycocyanin absorption feature. In decreasing order of performance, seven
algorithms, WV2Be162Bsub, WV2SiO52BDA, WV2Am092Bsub, WV2Be16NDPhyI WV2Mi092BDA,
and WV2MM12NDCI, had acceptable performance (Pearson’s r2 > 0.6; p < 0.001) with this sensor in this
exercise (Figure 8). The performance of each algorithm in Table 2 and Table S1 applied to the synthetic
WorldView-2 imagery was evaluated using 29 coincident surface observations (Table S2 and S4).
As with CASI, simple subtraction and ratio-based algorithms that include the 620 nm phycocyanin
absorption feature and/or reflectance in the near-infrared suppress illumination variation well and
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had the best performance with regard to BGA/PC value estimation. Index imagery with raw and
normalized index Type 1 (Pearson’s r) linear regressions are shown for the best performing algorithm
(WV2Be162Bsub) in Figure 8.
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Figure 8. Results of WV2Be162Bsub algorithm (this paper) as raw index values as applied to synthetic
WorldView imagery with brighter pixels in the reservoir indicating higher BGA values (a). Evaluation
via observed (Y axis = BGA_PC_RFU) vs. predicted (calculated) raw index value (WV2Be162Bsub)
with Pearson’s r2 (r2 = 0.790, p < 0.001, n = 29 to avoid shorelines) (b). Evaluation via observed
(Y axis = BGA_PC_RFU) vs. normalized predicted (calculated) BGA values (WV2Be162BsubPHY) with
Pearson’s r2 (r2 = 0.790, p < 0.001, n = 29 to avoid shorelines) (c). Details of the synthetic bands and
band math are available in Tables 1 and 2, respectively.
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3.3. Sentinel-2 (Synthetic)

We applied eight existing and five new algorithms in the form of 23 variants to the 20-m,
synthetic Sentinel-2 imagery. Sentinel-2 lacks a narrow band capable of measuring the 620 nm
phycocyanin absorption feature. The performance of each algorithm in Tables 2 and 3 applied to the
synthetic Sentinel-2 imagery was evaluated using 29 coincident surface observations coincident surface
observations chosen to avoid pixels that mixed land and water at 20 and 30 m spatial resolutions
(Tables S2 and S4). Six algorithms, S2Be162Bsub, S2SiO52BDA, S2Am092Bsub, S2MM12NDCI,
S2Mi092BDA, and S2Be16NDPhyI, had acceptable performance (Pearson’s r2 > 0.6; p < 0.001) with
this sensor in this experiment. The S2Be162Bsub, S2SiO52BDA, S2MM12NDCI, S2Mi092BDA, and
S2Be16NDPhyI algorithms also appear to have good portability between CASI, WorldView-2/-3 and
Sentinel-2 imagery (Tables S2 and S4 and Figure 9). The strong performance of these algorithms with
synthetic Sentinel-2 imagery and their wide swaths and dual constellation suggest that Sentinel-2
satellites will play a key role in future BGA monitoring systems for inland water quality. Index
imagery with raw and normalized index Type 1 (Pearson’s r) linear regressions are shown for the best
performing algorithm (S2Be162Bsub) in Figure 9.
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Figure 9. Results of S2Be162Bsub algorithm (this paper) converted to BGA values as applied to synthetic
Sentinel-2 imagery with brighter pixels in the reservoir indicating higher BGA values (a). Evaluation
via observed (Y axis = BGA_PC_RFU) vs. predicted (calculated) raw index value (S2Be162Bsub)
with Pearson’s r2 (r2 = 0.704, p < 0.001, n = 29 to avoid shorelines) (b). Evaluation via observed
(Y axis = BGA_PC_RFU) vs. normalized predicted (calculated) BGA values (S2Be162BsubPHY) with
Pearson’s r2 (r2 = 0.704, p value < 0.001, n = 29 to avoid shorelines) (c). The CASI data allowed the
synthesis of Sentinel-2 bands 2 through 9 only. Details of the synthetic bands and band math are
available in Tables 1 and 2, respectively.

3.4. Landsat-8 (Synthetic)

We applied nine existing algorithms in the form of 17 variants to the 30-m, synthetic Landsat-8
imagery. Landsat-8 lacks a narrow band capable of measuring the 620 nm phycocyanin absorption
feature. All of the algorithms applied here were indirect Chl-a proxy algorithms [6] accordingly.
Moreover, the widths and positions of Landsat-8 bands also make the application of shape metrics for
the Chl-a NIR reflectance peak feature infeasible and the application of some of the simple band ratio
algorithms challenging (Table 2 and Table S1, Figure 10). The best performing algorithm was the green
peak FLH Violet algorithm that incorporated the new ultra blue (“violet”) coastal band for this sensor
in this experiment [6].
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Figure 10. Results of new FLH Violet algorithm [6] as raw index values as applied to synthetic Landsat 8
imagery with brighter pixels in the reservoir indicating higher BGA values (a). Evaluation via observed
(Y axis = BGA_PC_RFU) vs. predicted (calculated) raw index value (L8Be15Flhviolet) with Pearson’s r2

(r2 = 0.339, p < 0.001, n = 29 to avoid shorelines) (b). Evaluation via observed (Y axis = BGA_PC_RFU)
vs. normalized predicted (calculated) BGA values (L8_FlhvioletPHY) with Pearson’s r2 (r2 = 0.339,
p < 0.001, n = 29 to avoid shorelines) (c). Details of the synthetic bands and band math are available in
Tables 1 and 2, respectively.

None of the simple spectrally-oriented semi-analytical algorithms (based at least in part on known
spectral features associated with known water quality parameters) considered here had acceptable
performance (Pearson’s r2 > 0.6; p < 0.001) with regard to BGA estimation with Landsat-8 in this
exercise due to its design for land vegetation (Chl-a) rather than BGA/PC in water. Index imagery with
raw and normalized index Type 1 (Pearson’s r) linear regressions are shown for the best performing
algorithm (L8Be15Flhviolet) in Figure 10. Local empirical algorithms based on other water quality
parameters such as Chl-a and turbidity with local calibration and validation are required for use
with Landsat-8 for reliable BGA estimation because Landsat-8 cannot sense the 620 nm phycocyanin
absorption feature [22].

3.5. MODIS (Synthetic)

We applied three existing algorithms (NDCI, 2BDA and Am092Bsub) in the form of six variants
to synthetic MODIS bands 1 and 2 [43] for BGA estimation with limited success (Tables S1, S2 and S4,
Figure 11). None of the spectrally-oriented semi-analytical algorithms considered here had acceptable
performance (Pearson’s r2 > 0.6; p < 0.001) with regard to BGA estimation with this sensor in this
experiment due to the wide MODIS bands. While MODIS could be a part of operational monitoring
systems, its wide bands and coarse spatial resolution suggest that it will have limited value in
operational monitoring systems for inland water quality, especially for smaller water bodies less than a
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few kilometers across. MODIS also lacks a narrow band capable of measuring the 620 nm phycocyanin
absorption feature [50].
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Figure 11. Results of MODISMM12NDCI4 algorithm [32] converted to BGA values as applied to
synthetic MODIS imagery with brighter pixels in the reservoir indicating higher BGA values (a).
Evaluation as raw index values as applied to synthetic MODIS imagery and its evaluation via
observed (Y axis = BGA_PC_RFU) vs. predicted (calculated) raw index value (MODISMM12NDCI4)
with Pearson’s r2 (r2 = 0.183, p = 0.126, n = 9 due to large pixels) (b). Evaluation via observed
(Y axis = BGA_PC_RFU) vs. normalized predicted (calculated) BGA values (MODISMM12NDCI4PHY)
with Pearson’s r2 (r2 = 0.183, p = 0.126, n = 9 due to large pixels) (c). Details of the synthetic bands and
band math are available in Tables 1 and 2, respectively.



Remote Sens. 2017, 9, 538 20 of 30

The performance of each algorithm in Table 2 and Table S1 applied to the synthetic MODIS
imagery was evaluated using nine coincident surface observations. These nine points were chosen to
avoid pixels that mixed land and water at 250 and 300 m spatial resolutions. MODIS bands 1 and 2
were simulated with the CASI data at 250 m spatial resolution to facilitate comparison of algorithm
performance. MODIS bands 1 and 2 are commonly available at the 250 m spatial resolution and are
part of the better performing algorithm (NDCI). This suggests that MODIS NDCI may have some
modest utility with regard to BGA estimation and algal bloom monitoring in some larger inland water
bodies. The large pixel sizes associated with MODIS make it more appropriate for relatively large
water bodies using other water quality parameters such as Chl-a or turbidity as proxies for BGA/PC.
MODIS imagery will also require severe masking to avoid shorelines (mixed land and water pixels)
(Figure 9a). Index imagery with raw and normalized index Type 1 (Pearson’s r) linear regressions are
shown for the best performing algorithm (MODISMM12NDCI4) in Figure 11.

3.6. MERIS (Synthetic)

We applied the 13 existing and four new algorithms in the form of 35 variants for BGA estimation
to synthetic Sentinel-3/MERIS/OLCI data for Harsha Lake with limited success (Tables S1, S2 and S4,
Figure 12) before severe masking (Figure 12a). MERIS has a narrow band capable of measuring
the 620 nm phycocyanin absorption feature. Ten of the BGA (direct) and Chl-a (indirect or proxy)
spectrally-oriented semi-analytical algorithms considered here had acceptable performance (Pearson’s
r2 > 0.6; p < 0.001) when tested against in situ YSI BGA probe data (BGA_PC_RFU) with this sensor in
this experiment after severe masking. In order of decreasing performance, the MERISMM092BDA,
MERISBe16NDPhyI, MERISMM12NDCI, MERISGo04MCI, MERISWy08CI and MERISKu15PhyCI,
MERISSi052BDA, MERISBe162Bsub, MERISHu103BDA, and MERISMM143BDAopt algorithms all
estimated BGA well in this exercise. We agree that MERIS/OLCI can be a part of operational water
quality monitoring systems [20]. However, high-spatial resolution CASI data show that there was
significant spatial heterogeneity in the values of BGA on a scale much finer than either Sentinel-3/
MERIS/OLCI (300 m) or MODIS (250 m) pixels. Index imagery with raw and normalized index Type 1
(Pearson’s r) linear regressions are shown for the best performing algorithm (MERISMMO92BDA) in
Figure 12.

Type 1 Standard Error of Regression (Standard Error of Estimate or S) values track our Pearson’s
r2 values (Table 3). The Type 2 geometric mean regressions [41] show an ordering of correlation similar
to those of Type 1 regressions [17,49] with somewhat poorer results for Landsat-8 (Table 4).
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Figure 12. Results of MERISMM092BDA algorithm (Mishra and Mishra, 2009) as raw BGA index
values as applied to synthetic MERIS imagery with brighter pixels in the reservoir indicating higher
BGA values (a). Evaluation via observed (Y axis = BGA_PC_RFU) vs. predicted (calculated) raw BGA
index values (MERISMM092BDA) values with Pearson’s r2 (r2 = 0.863, p < 0.001, n = 9 due to large
pixels) (b). Evaluation via observed (Y axis = BGA_PC_RFU) vs. normalized predicted (calculated)
BGA (MERISMM092BDA) values with Pearson’s r2 (r2 = 0.863, p < 0.001, n = 9 due to large pixels) (c).
Details of the synthetic bands and band math are available in Tables 1 and 2, respectively.

4. Discussion

The focus of this study is on simple, portable, semi-analytical algorithms based on the phycocyanin
and Chl-a spectral signatures. CASI, WorldView and MERIS are capable of sensing the narrow 620 nm
phycocyanin absorption feature (Figure 1, Table 1). Algorithms specifically tuned to this phycocyanin
feature had the best performance for 1 m CASI imagery (CASIBe152BsubPhy, r2 = 0.776) and 1.8 m
WorldView imagery (WV2Be162Bsub, r2 = 0.790) and the second best for 300 m MERIS imagery
(MERISBe16NDPhyI, r2 = 0.852) (Table S4). An indirect BGA index algorithm, MERISMM092BDA
(r2 = 0.863), designed to measure Chl-a had the best performance with regard to BGA estimation with
simulated MERIS/OLCI imagery.

Wheeler et al. [30] observed similar results for MERIS in Lake Champlain, New York, USA,
with a stronger correlation of BGA to NIR reflectance than 620 nm absorption. They ascribed this
result to non-linear absorption at 620 nm, spectral interference of Chl and other pigments with the
620 nm feature, due in part to surface scums, and temporal/environmental differences in phycocyanin
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absorption efficiency. Our results suggest that the large pixel sizes of MERIS may contribute
to the masking of the 620 nm phycocyanin absorption feature, although the phycocyanin-tuned
MERISBe16NDPhyI algorithm still had excellent performance (r2 = 0.852) probably due to the strong
algal and turbidity contrasts between the eastern and western basins of Harsha Lake at the time of
aircraft image acquisition. In addition, MERIS does not capture the spatial variation observed in higher
resolution imagery discussed above accordingly [6]. We conclude that phycocyanin specific algorithms
with strong performance are available for CASI, WorldView and MERIS-like imagers.

In contrast, Sentinel-2, Landsat-8 and MODIS are not capable of sensing the narrow 620 nm
phycocyanin absorption feature (Figure 1, Table 1). We relied on Chl-a proxy algorithms summarized
in [6] for BGA estimation with these imagers accordingly. The best performing Chl-a proxy algorithms
for BGA were S2Be16Bsub for Sentinel-2 (r2 = 0.704), L8Be15Flhviolet for Landsat-8 (r2 = 0.339) and
MODISMMNDCI12 for MODIS (r2 = 0.183). The strong performance of Sentinel-2 for BGA estimation
via the S2Be16Bsub Chl-a algorithm makes it a valuable component for cyanobacterial monitoring in at
least some inland water bodies similar to Harsha Lake. The poor performance of these semi-analytical
Chl-a proxy algorithms for BGA estimation with Landsat-8 and MODIS mirrors their poor performance
for Chl-a estimation due to their wide bands relative to distinctive parts of the Chl-a spectral signature
in water [6]. Indirect empirical local algorithms based on one or several other co-varying water quality
parameters may be necessary for Landsat-8 and MODIS algorithms accordingly and will require
local tuning.

Ogashawara et al. [14] completed a performance review of reflectance based algorithms for
predicting phycocyanin values in waters with both field and laboratory fluorometry. For this study we
used field-based fluorometery using a calibrated YSI BGA probe. Despite our differences in approaches
(surface remote sensing reflectance (Rrs) vs. aircraft relative reflectance) our results are remarkably
similar. Ogashawara et al. [14] simulated Hyperion, CHRIS and HyspIRI narrow band imager data
from their surface spectroradiometer data. They found the SI05, MM09, and MI09 algorithms all
performed well (strong r2 values with modest RMSE values) with more modest results for the SC00
(SY00 in our study) [47] algorithm in their study. Our real calibrated aircraft relative reflectance
based imagery showed the same pattern (Table S4). In fact, we found only one simple subtraction
(Be162BsubPhy715sub615) algorithm that exceeds the performance of the simplified Simis algorithm [7]
in our study. This simple subtraction algorithm leverages the band choices of Mishra et al. [11] for
minimizing the Chl-a spectral overlap with that of the 620 nm phycocyanin absorption feature in their
MI09 band ratio algorithm.

The strong performance of our simple subtraction algorithm in this particular “snap-shot” study
with real narrow band CASI data may not hold for time-series imagery with illumination variation
between dates of acquisition. Like Mishra et al. [11] we expect their MI09 ratio-based algorithm
(and other band ratio and shape metric algorithms) to be more robust across time-series imagery
because they inherently damp variations in illumination. In addition, similar to Mishra et al. [11],
we used the simplified version of the Simis et al. [7] algorithm because we are trying to evaluate
the portability of relatively simple algorithms between narrow, moderate and broad band satellite
imagers [6], some of which have relatively limited band choices in order to create meta-constellations
of current and near-term imagers for operational algal bloom monitoring. The performance of these
algorithms with real imagers will vary due to differences in their on-orbit radiometry and for other
water bodies due to variable values of BGA/PC and co-occurring water quality parameters including
those described below.

This study measured 41 water quality parameters (Table 5) at each of the 44 coincident surface
observation sites during the hyperspectral overpass used to construct the coincident synthetic imagery
for the satellite imaging systems considered above. These data helped to determine when and
why some proxy algorithms such as those for Chl-a also work for BGA estimation. Of primary
importance was quantifying the output of our YSI BGA fluorescence probes which recorded in BGA
phycocyanin (PC) relative fluorescence units (BGA_PC_RFU) vs. total laboratory BGA cell counts
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(Figure 13). A comparison of these optical sonde BGA values (BGA-PC-RFU) vs. laboratory determined
Cyanobacterial Sum of Total Biovolume (CSTB) values measured on the same day resulted in Pearson’s
r2 = 0.757 with p < 0.001 and n = 39 (Figure 13). We are confident in the validity of using optical sonde
BGA_PC_RFU values as the basis for our coincident BGA surface observations accordingly.
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Figure 13. Comparison of optical sonde BGA values (Bga-PC-RFU) vs. laboratory determined Cyanobacterial
Sum of Total Biovolume values measured in Harsha and a nearby reservoir on the same days with
Pearson’s r2 (r2 = 0.757, p < 0.001, n = 39).

Our normalized phycocyanin index values for the best performing algorithms for all imagers
except MODIS allow us to predict phycocyanin values (BGA_PC_RFU) and in turn cyanobacterial sum
of total biovolume (CSTB). For example if we were to determine that a CASI pixel has an estimated
normalized index value of 12 (Figure 7c) this would correspond to a BGA_PC_RFU value of 12 as
well. This BGA_PC_RFU value of 12 would in turn correspond with a CSTB value of approximately
1.2 µm3/L. One can make similar phycocyanin value estimates with WorldView-2 (Figure 8c), Sentinel-2
(Figure 9c), Landsat-8 (Figure 10c), and perhaps Sentinel-3/MERIS/OLCI (Figure 11c) and then CSTB
estimates from Figure 13, respectively. We expect slopes and intercepts for normalized phycocyanin
index values for the best performing algorithms derived from real WorldView-2, Sentinel-2, Landsat-8
(Figure 10c), and perhaps Sentinel-3/MERIS/OLCI reflectance imagery to differ somewhat from the
synthetic results here. Once we have calibrated the time-series imagery from these imagers for the
most promising algorithms identified here we will be able to make similar phycocyanin values and
CSTB estimates for real satellite imagery.

Operational use of this method for estimating phycocyanin values (BGA_PC_RFU) and CSTB
will be facilitated by the use of multiple satellite imaging platforms that will improve revisit times
and help to alleviate summer cloud cover which limits the utility of single satellite HAB monitoring
systems. For example cloud free images of Harsha Lake from Landsat-8 are available for perhaps 1 out
of 4 overpasses. We hope to improve our temporal resolution by using the technique described above
to approximately every two weeks by using Landsat-8 in combination with Sentinel-2a and -2b at a
minimum. We will augment this coverage with WorldView-2 and -3 imagery when it is available to us.
Larger water bodies should be able to use Sentinel-3/MERIS/OLCI imagery as well.
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Table 5. Water Quality Parameters Investigated for covariation with BGA.

Constituent (unit) Description

Alkalinity mg as CaCO3 as is
BGA-PC-Cells/mL BlueGreen Algae (Cyanobacteria) probe response as cell density

BGA-PC-RFU BlueGreen Algae (Cyanobacteria) probe response as relative fluorescence unit
Chl-µg/L Chlorophyll probe response as concentration
Chl-RFU Chlorophyll probe response as relative fluorescence unit
Depth-m as is

DNH4 (ugN/L) Dissolved Ammonium
DNO2-3 (ugN/L) Dissolved Nitrite-Nitrate

DOC (mg/L) Dissolved organic Carbon
DRP (ugP/L) Dissolved Reactive Phosphorous (or filtered Ortho-P)

hardness mg as CaCO3 as is
HCO3- (est) (ppm) Bicarbonate ion

MC-LR CV Coefficient of variation of environmental sample run in triplicate
MC-LR Stdev (3reps) Standard deviation of environmental sample run in triplicate

Microcystin-LR equivalent Microcystin LR equivalents measured by ELISA as concentration (PPB)
ODO-mg/L Optical Dissolved Oxygen probe measurement as concentration
ODO Sat % Optical Dissolved Oxygen probe measurement as percent saturation

OM percent (% OM) % organic matter of suspended solids
pH as is

pH (@Alkalinity measurement) as is
PN (ugN/L) Particulate Nitrogen
POC (mg/L) Particulate Organic Carbon
PP (ugP/L) Particulate Phosphorous

PRP (ugP/L) Particulate Reactive Phosphorous

RCe,a (ug/L) Phaephyton Corrected Chlorophyll A measured as absorbance on filtered and
extracted samples

RCHLa (ug/L) Uncorrected Chlorophyll A measured as absorbance on filtered and extracted samples
RCHLb (ug/L) Uncorrected Chlorophyll B measured as absorbance on filtered and extracted samples
RCHLc (ug/L) Uncorrected Chlorophyll C measured as absorbance on filtered and extracted samples
RPe,a (ug/L) Phaephyton measured as absorbance on filtered and extracted samples

Sonde Number as is
SpCond-uS/cm Specific Conductance in microsemens per cm

TDN (ugNL) Total Dissolved Nitrogen
TDP (ugP/L) Total Dissolved Phosphorous

Temp-◦C as is
Time as is

TN (ugN/L) Total Nitrogen
TNH4 (ugN/L) Total Ammonium

TOC (mg/L) Total Organic Carbon
TP (ugP/L) Total Phosphorous

TRP (ugP/L) Total Reactive Phosphorous (or Unfiltered Ortho-P)
TSS (mg/L) Total Suspended Solids

Turbidity-NTU as is
VSS (mg/L) Volatile Suspended Solids

Our results show that several other water quality parameters were also correlated with
BGA_PC_RFU values in Harsha reservoir at the time of hyperspectral image acquisition (Table 6).
Thirteen water quality parameters had Pearson’s r2 values greater than 0.500. They were, in order
of decreasing correlation, Turbidity (NTU) (r2 = 0.852), total suspended solids (TSS) (r2 = 0.789),
total phosphorous (TP) (r2 = 0.724), particulate phosphorous (PP) (r2 = 0.697), volatile suspended
solids (VSS) (r2 = 0.666), dissolved reactive phosphorous (DRP) (r2 = 0.661), total nitrogen (TN)
(r2 = 0.656), Chlorophyll as concentration and as RFU (r2 = 0.651 and 0.640, respectively), total
dissolved phosphorous (TDP) (r2 = 0.610), particulate nitrogen (PN) (r2 = 0.591), bicarbonate (HCO3-)
(r2 = 0.551) and alkalinity as mg of CaCO3 (r2 = 0.542) (Tables 5 and 6). Of these parameters, only
Turbidity (NTU), TSS, VSS, and CHL, are spectrally active. Nonetheless, their strong co-variance
with spectrally inactive water constituents explains why local empirical regressions against band
reflectance values may be used to locally estimate a number of water quality parameters after local
calibration [14,23,30] although their portability may be limited.

In summary, there are several excellent semi-analytical spectrally based algorithm/imager
combinations capable of estimating BGA values and cyanobacterial total volumes in smaller
inland water bodies either directly via the phycocyanin signature with CASI, WorldView-2/-3, and
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Sentinel-3/MERIS/OLCI (Table S4) or indirectly via the Chl-a signature with Sentinel-2 and to a lesser
extent Landsat-8 [6].

Table 6. Correlation of Water Quality Parameters Investigated with BGA_PC_RFU as measured by
Pearson’s r test.

Constituent (Unit) No. of
Water Pearson’s r Pearson’s r2 p Value Slope Intercept

Truth Sites vs.
BGA_RFU

vs.
BGA_RFU

vs.
BGA_RFU

vs.
BGA_RFU

vs.
BGA_RFU

Alkalinity mg as CaCO3 44 0.736 0.542 <0.001 0.401 −22.727
BGA-PC-Cells/mL 44 1.000 1.000 <0.001 0.000 −0.245

Chl-µg/L 44 0.807 0.651 <0.001 0.666 3.889
Chl-RFU 44 0.800 0.640 <0.001 3.500 2.555

DNO2-3 (ugN/L) 44 −0.097 0.009 0.530 −0.058 10.833
DOC (mg/L) 44 0.361 0.130 0.016 7.673 −41.867
DRP (ugP/L) 44 0.813 0.661 <0.001 0.541 4.247

hardness mg as CaCO3 44 0.540 0.292 <0.001 0.264 −17.696
HCO3- (est) (ppm) 44 0.742 0.551 <0.001 0.593 −31.110

Microcystin-LR equivalent 44 0.279 0.078 0.066 1.178 4.917
Microcystin-LR equivalent 2–6.5 ppm 44 0.665 0.442 <0.001 6.105 −17.233

ODO-mg/L 44 0.357 0.127 0.019 0.628 −0.121
ODO Sat % 44 0.309 0.095 0.044 0.041 1.571

OM percent (% OM) 44 −0.522 0.272 <0.001 −0.361 41.143
pH 44 0.475 0.226 0.001 8.531 −74.903

pH (@Alkalinity measurement) 44 0.180 0.032 0.249 7.193 −58.769
PN (ugN/L) 44 0.769 0.591 <0.001 0.021 −1.928
POC (mg/L) 44 −0.053 0.003 0.734 −1.503 11.308
PP (ugP/L) 44 0.835 0.697 <0.001 0.200 −3.672

PRP (ugP/L) 44 0.163 0.027 0.296 0.101 9.154
RCe,a (ug/L) 44 0.323 0.104 0.035 0.143 5.158
RPe,a (ug/L) 44 0.671 0.450 <0.001 0.214 7.615

SpCond-uS/cm 44 0.505 0.255 <0.001 0.225 −47.140
TDN (ugNL) 44 0.156 0.024 0.317 0.017 0.626
TDP (ugP/L) 44 0.781 0.610 <0.001 0.288 5.984

Temp-◦C 44 −0.497 0.247 <0.001 −3.136 101.334
TN (ugN/L) 44 0.810 0.656 <0.001 0.022 −15.515

TNH4 (ugN/L) 44 −0.093 0.009 0.554 −0.030 11.033
TOC (mg/L) 44 0.428 0.183 0.004 12.258 −79.471
TP (ugP/L) 44 0.851 0.724 <0.001 0.129 −0.672

TRP (ugP/L) 44 0.667 0.445 <0.001 0.301 2.952
TSS (mg/L) 44 0.888 0.789 <0.001 1.545 −5.619

Turbidity-NTU 44 0.923 0.852 <0.001 1.319 −8.609
VSS (mg/L) 44 0.816 0.666 <0.001 2.025 −7.280

5. Uncertainties, Errors and Accuracies

Our Chl-a companion study [6] included an error budget for the radiometry of our real aircraft
and synthetic satellite imagery that indicated radiometric uncertainties on the order of 200%. Similarly,
our field spectra could have radiometric uncertainties on the order 800% based on previous sun glint
and wave studies [51]. Nonetheless, the very strong performance of several well established BGA
and Chl-a algorithms with our atmospherically corrected hyperspectral aircraft imagery suggests that
our methods were more than adequate for our “red flag” early warning purposes. As noted above,
we are also cautious about the very strong performance of MERIS in this study. Its extraordinary
performance may be partially due to the high contrast in BGA values between the east and west basins
of Harsha Lake at the time of the experiment. We are also cautious with regard to the very strong
performance of the simple BGA subtraction algorithms we used and suspect that other algorithms
such as the Mishra family of ratio algorithms may be more appropriate for time-series imagery in
operational settings. For these reasons, we expect the algorithm performance rankings to differ
somewhat with real imagery and have identified groups of promising imager/algorithm combinations
accordingly (Tables S2 and S3). Nonetheless, we are confident of our overall results given the very
strong performance of many well established BGA and Chl-a algorithms with our dense, nearly
coincident surface observations.
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6. Conclusions

This study used atmospherically corrected high-spatial and high-spectral resolution VNIR
CASI hyperspectral imagery to construct synthetic WorldView-2, Sentinel-2, Landsat-8, MODIS and
Sentinel-3/MERIS/OLCI image datasets with dense coincident surface observations in the form of
in situ water quality sonde and laboratory measurements to evaluate the performance of reflectance
algorithms for estimating BGA values in a 8.9 km2 temperate inland reservoir. The study focused on
currently operational and near-future imaging satellite constellations that may be suitable contributors
to an operational water quality monitoring system for smaller inland reservoirs, lakes and rivers.

6.1. Best Performing Imager/Algorithm Combinations for BGA Estimation

We found that several established algorithms for the estimation of BGA values performed well
(Pearson’s r2 > 0.6; p < 0.001) for most of the real aircraft and synthetic satellite datasets considered here.
The Be162BsubPhy, SI052BDA, Be162B700sub601, Be16NDPhyI, Gi033BDA, Da052BDA, SM122BDA,
Ku15PhyCI, MM092BDA, MI092BDA, Wy08CI, Zh10FLH, and MM12NDCI BGA algorithms worked
well with CASI imagery. The Be162BsubPhy, SI052BDA, Am092Bsub, Be16NDPhyI, Mi092BDA,
and MM12NDCI BGA algorithms worked well with WorldView-2 and -3; the Be162Bsub algorithm
with Sentinel-2; and the MM092BDA, Be16NDPhyI, MM12NDCI, Go04MCI, Ku15PhyCI, Wy08CI,
SI052BDA, Be162BsubPhy, and Hu103BDA BGA algorithms with MERIS-like imagery. Be162BsubPhy
was the most widely applicable BGA algorithm (Table S4). The Be16FLHviolet “greenness” algorithm
yielded the best (albeit poor) BGA estimates with simulated Landsat-8 imagery.

Algorithm/imager combinations listed in the preceding paragraph that include the phycocyanin
reflectance minimum at 620 nm had slightly better performance with regard to BGA estimation
than Chl-a algorithms for CASI and WorldView-2 and were only slightly less effective than Chl-a
algorithms for Sentinel-3/MERIS/OLCI as predicted by Simis et al. [7] and Mishra et al. [11] (Table S4).
For imagers without a narrow band at 620 nm, we used Chl-a proxy algorithms to estimate BGA with
good results for simulated Sentinel-2 and poor results for simulated Landsat-8 and MODIS for this
water body at the time of hyperspectral image acquisition.

6.2. Portability of Algorithms between Imagers

The simple phycocyanin spectrum-based, semi-analytical Be162Bsub subtraction algorithms
had the highest portability between the CASI, WorldView-2 and MERIS-like imaging systems. Other
simple band ratio-based algorithms also suppress illumination variation between scenes and estimate
BGA values well after imager and environment specific calibration (Table S4). This is especially
effective when these simple subtraction and band ratio algorithms are applied to imagers with
relatively narrow bands that capture the 620 nm phycocyanin reflectance minimum (Si052BDA for
CASI, WorldView and MERIS) or near-infrared/red Chl-a reflectance contrast (MM092BDA also for
MERIS). The normalized difference phycocyanin index (Be16NDPhyI for CASI, WorldView and MERIS)
and normalized difference chlorophyll index [32] (MMNDCI12 for CASI, WorldView, Sentinel-2, and
MERIS) algorithms also performed well with regard to BGA estimation (Table S4). Landsat-8 requires
an alternative algorithm such the Chl-a “greenness” FLH Violet algorithm [6]. MERIS and MODIS
do not capture the spatial heterogeneity in BGA observed in this study due to their large pixels.
MODIS has wide bands that do not target the “veg edge” or BGA absorption feature well and has
low performance accordingly (Tables S2 and S4) although it may be useful with NDCI for larger
water bodies.

6.3. Implications for Operational BGA Monitoring with Existing and Near-Future Satellites

For imagers with appropriate bandwidths and positions relative to the BGA phycocyanin
reflectance signature and pixel sizes appropriate for smaller inland water bodies less than a few km
across, simple algorithms that subtract or ratio bands and therefore inherently normalize reflectance
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performed well and appear to be relatively portable between most satellite imaging systems for the
estimation of BGA in smaller inland water bodies. Therefore, near-term steps toward operational water
quality monitoring systems for inland water bodies smaller than a few kilometers across should focus
on Sentinel-2 A and B and to a lesser extent Landsat-8 with augmentation from WorldView-2 and -3 or
hyperspectral imagery when required. Good performance of both BGA and Chl-a algorithms for BGA
estimation suggests that early efforts to operationalize regional algal monitoring can use whichever set
of algorithms are most appropriate for the sources of imagery at hand (Sentinel-2/3, WorldView-2/3
and to a lesser extent Landsat-8). Sentinel-3/MERIS/OLCI may also be useful for heavily masked
time-series monitoring but will capture very little of the spatial heterogeneity of BGA and CSTB values
in smaller inland water bodies.

The somewhat better performance of phycocyanin specific semi-analytical algorithms for BGA
and CSTB estimation suggests that future satellite imaging systems for cyanobacterial monitoring in
smaller inland water bodies that are often sources of drinking water should include a narrow band
focused on the 620 nm absorption feature [7,8,11,22] and spatial resolutions of 20–90 m. Such systems
should also include “water vapor” bands at 770–870 nm and 870–1020 nm to facilitate atmospheric
correction to reflectance [52] for real time monitoring of smaller inland water bodies [53].

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/6/538/s1,
Table S1. Band math with band number and band wavelengths in nm for each algorithm used for BGA/PC
relative fluorescence unit (BGA_PC_RFU) estimation at Harsha Lake using phycocyanin indices and nearest
center band wavelengths in current and near-future satellite imaging systems. Float refers to floating point
values of relative reflectance in the ENVI band math we used in this study at the specified wavelengths in
nm from atmospherically corrected imagery. Float is not a variable, it is an IDL function used to prevent
byte overflow errors during calculation. Band number and band wavelengths are listed for each algorithm
sequentially, Table S2. Performance of algorithms for BGA estimation at Harsha Lake using image derived
phycocyanin indices according to Pearson’s r test (Type 1) linear regressions. Satellite/Algorithm combinations
with asterisk measure the 620 nm phycocyanin absorption feature directly. Y-axis (dependent variable) and
intercept have units of BGA_PC_RFU. X-axis is a unit less numerical index, Slope has units of BGA_PC_RFU,
Table S3. Performance of Algorithms for BGA Estimation at Harsha (East Fork) Lake with all results normalized
to calculated BGA/PC values. Satellite/Algorithm combinations with asterisk measure the 620 nm phycocyanin
absorption feature directly. Y-axis (dependent variable) and intercept have units of BGA_PC_RFU. X-axis also
has units of BGA_PC_RFU. Slope is unit less, Table S4. Direct and Indirect BGA Indices Ranked by Performance
(Pearson’s r2). Satellite/Algorithm combinations with asterisk measure the 620 nm phycocyanin absorption
feature directly. Y-axis (dependent variable) and intercept have units of BGA_PC_RFU. X-axis also has units of
BGA_PC_RFU. Slope is unit less.
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